The following is a listing of some of the published articles about Rubidium-82

Alvarez-Diez TM, deKemp R, Beanlands R, Vincent J.
Manufacture of strontium-82/rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography.

DeKemp RA, Ruddy TD, Hewitt T, Dalipaj MM, Beanlands RS.
Detection of serial changes in absolute myocardial perfusion with 82Rb PET.

Tamaki N, Ruddy TD, DeKemp R, Beanlands RSB.
*Philadelphia: Lippincott Williams & Wilkins; 2002; 320–33

Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease.
*J Nucl Cardiol* 2004; 11:440-9

Epstein NJ, Benelfassi A, Beanlands RSB, deKemp RA.
A 82Rb infusion system for quantitative perfusion imaging with 3D PET.
*Appl Radiat Isotopes* 2004; 60:921–7

Prognostic significance of dipyridamole-induced ST depression in patients with normal 82 Rb PET myocardial perfusion imaging.

Chow Benjamin JW, Ananthasubramaniam K, deKemp RA, Dalipaj M, Beanlands RSB, Ruddy TD.
Comparison of treadmill exercise versus dipyridamole stress with myocardial perfusion imaging using rubidium-82 positron emission tomography.
*J Am Coll Cardiol* 2005; 46:1227-34

Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, Lok-Tin Szeto A, Aung M, Davies RA, Ruddy TD, Beanlands RS.
What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography?
*J Am Coll Cardiol* 2006; 48:1029-39
Klein R, Adler A, Beanlands RS, deKemp RA.  
Precision controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography.  
*Phys Med Biol 2007; 52:659–73*

Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, deKemp RA.  
Quantification of myocardial blood flow with 82Rb dynamic PET imaging.  
*Eur J Nucl Med Mol Imaging 2007; 34:1765—74*

deKemp RA, Yoshinaga K, Beanlands RS.  
Will 3-dimensional PETCT enable the routine quantification of myocardial blood flow?  
*J Nucl Cardiol 2007; 14:380—397*

Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease.  
*Can J Cardiol 2007; 23:801–7*

Osamu Manabe, Yoshinaga Keiichiro, Katoh Chietsugu, Naya Masanao, deKemp Robert A, Tamaki Nagara.  
Repeatibility of rest and hyperemic myocardial blood flow measurements with 82Rb dynamic PET.  

Klein, R., Beanlands, R. S., deKemp, R. A.  
*J. Nucl. Cardiol 2010; 17(4):555-570*

Klein R., Renaud J. M., Ziadi M. C., Thorn S. L., Adler A., Beanlands R. S., deKemp R. A.  
Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using Rubdium-82 PET and a highly automated analysis program.  
*J. Nucl. Cardiol 2010; 17(4):600-616*

Yoshinaga K., Klein R., Tamaki N.  
Generator Produced Rubidium-82 Positron Emission Tomography Myocardial Perfusion Imaging From Basic Aspects to Clinical Applications.  
*J. Of Cardiol 2010; 55(2):163-173*
Hunter C, Ziadi MC, Etele J, Hill J, Beanlands RS, deKemp RA. Rest and stress dosimetry for Rubidium-82 using new effective dose estimates based on dynamic PET/CT imaging in humans. 
*J Nucl Med* 2010;26 Suppl D:40D–42D

*Circ J* 2011; 75:2628–2634

Ziadi Maria C. MD, deKemp Robert A. PhD, Williams Kathryn A. MS, Guo Ann MEng, Chow Benjamin J.W. MD, Renaud Jennifer M. MSc, Ruddy Terrance D. MD, Sarveswaran Niroshi, BHSc, Tee Rebecca E, MSc and Beanlands Rob S.B. MD. Impaired myocardial flow reserve on Rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. 
*J Am Coll Cardiol* 2011; 58:740–748.

Efseaff Matthew, Klein Ran PhD, Ziadi Maria C. MD, Beanlands Rob S. MD, FRCPC, FACC, and deKemp Robert A. PhD, PEng, PPhysa. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. 

Ziadi Maria C., deKemp Robert A., Williams Kathryn, Guo Ann, Renaud Jennifer M., Chow Benjamin J.W., Klein Ran, Ruddy Terrance D., Aung May, Garrand Linda, and Beanlands Rob S. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? 

*J Nucl Cardiol* 2012; 19(4):763–74

Kaster T, Mylonas I, Renaud JM, Wells GA, Beanlands RSB, deKemp RA. Accuracy of low-dose rubidium-82 myocardial perfusion imaging for detection of coronary artery disease using 3D PET and normal database interpretation. 
*J Nucl Cardiol; Online September 2012; 19(6): 1135-1145

Mc Ardle BA, Dowsley TF, dekemp RA, Wells GA, Beanlands, RSB.
Does Rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary artery disease? A systematic review and meta-analysis.  
*J Am Coll Cardiol 2012; 60(18):1828-1837*

*J Nucl Med 2013; 54:571–577*

Ohira H, Mc Ardle B, Cocker MS, deKemp RA, DaSilva JN, Beanlands RS. Current and Future Clinical Applications of Cardiac Positron Emission Tomography.  
*Circulation Journal; Publish online March 12, 2013: ISSN-1346-9843*

Yano Y. Essentials of a Rubidium-82 generator for nuclear medicine.  
*Appl. Radiat. Isot. 1987; 38 205–11*

*J Am Coll Cardiol 1986; 7:775-89*

Go RT, Marwick TH, MacIntyre WJ, Saha GB, Neumann DR, Underwood DA, Simpfendorfer CC.  
A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease.  
*J Nucl Med 1990; 31:1899-905*

Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease.  
*Am J Cardiol. 1991; 67:1303-10*

Detection of coronary artery disease with positron emission tomography and rubidium 82.  
*Am Heart J. 1992 Mar; 123(3):646-52*
A retrospective study of the diagnostic accuracy of a community hospital-based PET center for the detection of coronary artery disease using rubidium-82.


Marwick TH, Shan K, Patel S, Go RT, Lauer MS.
Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease.

*Am J Cardiol* 1997; 80:865-870

Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, Hertenstein GK, Moutray KL, Reid K, Cullom SJ.
Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT.

*J Nucl Cardiol* 2006; 13:24-33

Merhige Michael E., Breen William J., Shelton Victoria, Houston, Theresa, Darcy Brian J., Perna Anthony F.
Impact of myocardial perfusion imaging with PET and $^{82}$Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management.


Santana Cesar A, Folks Rusell D, Garcia Ernest V, Verdes Liudmila, Sanyal Rupan, Hainer Jon, Di Carli Marcelo F, Esteves Fabio P.
Quantitative 82Rb PET/CT: Development and Validation of Myocardial Perfusion Database.


Kaufmann Phillip A.
82-Rubidium - The dawn of cardiac PET in Europe?


Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF.
Diagnostic accuracy of rubidium-82myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease.

*J Am Coll Cardiol* 2007; 49:1052-8

Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, DiCarli MF.
Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic disease: A Rb-82 PET/CT study.


Esteves FP, Sanyal R, Nye JA, Santana CA, Verdes L, Raggi P.
Adenosine stress rubidium-82 PET/computed tomography in patients with known and suspected coronary artery disease.

*Nuc Med Commun 2008; 29:674–8*

Gibbons Raymond J, Chareonthaitawee Panithaya.
Establishing the prognostic value of Rb-82 PET myocardial perfusion imaging.

Dorbala Sharmila, Hachamovitch Rory, Curillova Zelmira, Thomas Deepak, Vangala Divya, Kwong Raymond Y, and Di Carli Marcelo F.
Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF.

Senthamizhchelavan Srinivasan, Bravo Paco E, Esaias Caroline, Lodge Martin A, Merrill Jennifer, Hobbs Robert F, Sgouros, Bengel Frank L.
Human biodistribution and radiation dosimetry of $^{82}$Rb.
*J Nucl Med 2010; 51:1592–1599*

Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT.
*J Nucl Cardiol 2010; 17:247-53*

Senthamizhchelvan Srinivasan, Bravo Paco E, Lodge Martin A, Merrill Jennifer, Bengel Frank M, Sgouros George.
Radiation dosimetry of $^{82}$Rb in humans under pharmacologic stress.
*J Nucl Med 2011; 52:485-491*

Bengel FM.
Leaving Relativity Behind: Quantitative Clinical Perfusion Imaging.
*J Am Coll Cardiol 2011; 58(7): 749-751*

Fukushima Kenji, Javadi Mehrbod S, Higuchi Takahiro, Bravo Paco E, Chien David, Lautamaki Riikka, Merrill Jennifer, Nekolla Stephan G. Bengel Frank M.
Impaired global myocardial flow dynamics despite normal left ventricular function and regional perfusion in chronic kidney disease: a quantitative analysis of clinical $^{82}$Rb PET/CT studies.
*J Nucl Med 2012; 53:887–893*

Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: Normal limits and correlation with invasive coronary angiography.
*J Nucl Cardiol 2012; 19(2):265-276*
Rischpler Christoph, Higuchi Takahiro, Fukushima Kenji, Javadi Mehrbod S, Merrill Jennifer, Nekolla Stephan G, Bravo Paco E, Bengel Frank M.
Transient Ischemic Dilation Ratio in 82Rb PET Myocardial Perfusion Imaging: Normal Values and Significance as a Diagnostic and Prognostic Marker.

Ohira Hiroshi, Mc Ardle Brain, Cocker Myra, et al.
Current and Future Clinical Applications of Cardiac Positron Emission Tomography.
Circ J 2013; 77: 836 – 848